Giải bài 6 trang 169 sách giáo khoa Đại số và Giải tích 11
6. Chứng minh rằng các hàm số sau
- Bài học cùng chủ đề:
- Bài 7 trang 169 sách giáo khoa Đại số và Giải tích 11
- Bài 8 trang 169 sách giáo khoa Đại số và Giải tích 11
- Lý thuyết đạo hàm của hàm số lượng giác
- Ngữ pháp tiếng anh hay nhất
Bài 6. Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc \(x\):
a) \(\sin^6x + \cos^6x + 3\sin^2x.\cos^2x\);
b) \({\cos ^2}\left ( \frac{\pi }{3}-x \right )+ {\cos ^2} \left ( \frac{\pi }{3}+x \right ) + {\cos ^2}\left ( \frac{2\pi }{3}-x \right )\) \(+{\cos ^2} \left ( \frac{2\pi }{3}+x \right )-2\sin^2x\).
Lời giải:
a) Ta có:
\(y' = 6{\sin ^5}x.\cos x - 6{\cos ^5}x.\sin x + 6\sin x.\cos^3x - 6{\sin ^3}x.\cos x\)
\(= 6{\sin ^3}x.\cos x(\sin^2 x - 1) + 6\sin x.\cos^3 x(1 - {\cos ^2}x)\)
\(= - 6{\sin ^3}x.\cos^3 x + 6{\sin ^3}x.\cos^3 x = 0\).
Vậy \(y' = 0\) với mọi \(x\), tức là \(y'\) không phụ thuộc vào \(x\).
b)
\(y = {{1 + \cos \left( {{{2\pi } \over 3} - 2x} \right)} \over 2} + {{1 + \cos \left( {{{2\pi } \over 3} + 2x} \right)} \over 2} + {{1 + \cos \left( {{{4\pi } \over 3} - 2x} \right)} \over 2} \)
\(+ {{1 + \cos \left( {{{4\pi } \over 3} + 2x} \right)} \over 2} - 2{\sin ^2}x\)
Áp dụng công thức tính đạo hàm của hàm số hợp ta được
\(y' =\sin \left ( \frac{2\pi }{3}-2x \right ) - \sin \left ( \frac{2\pi }{3}+2x \right )+ \sin \left ( \frac{4\pi }{3}-2x \right ) - \sin \left ( \frac{4\pi }{3}+2x \right )\)
\(- 2\sin 2x = 2\cos \frac{2\pi }{3}.\sin(-2x) + 2\cos \frac{4\pi }{3}. \sin (-2x) - 2\sin 2x \)
\(= \sin 2x + \sin 2x - 2\sin 2x = 0\),
vì \(\cos \frac{2\pi }{3}\) = \(\cos \frac{4\pi }{3}\) = \( -\frac{1}{2}\).
Vậy \(y' = 0\) với mọi \(x\), do đó \(y'\) không phụ thuộc vào \(x\).
dayhoctot.com