Giải bài 1 trang 57 sgk đại số và giải tích 11
Viết khai triển theo công thức nhị thức Niu - Tơn:
- Bài học cùng chủ đề:
- Bài 2 trang 58 sgk đại số và giải tích 11
- Bài 3 trang 58 sgk đại số và giải tích 11
- Bài 4 trang 58 sgk đại số và giải tích 11
- Ngữ pháp tiếng anh hay nhất
Bài 1. Viết khai triển theo công thức nhị thức Niu - Tơn:
a) \({\left( {a{\rm{ }} + {\rm{ }}2b} \right)^5}\);
b) \({\left( {a{\rm{ }} - {\rm{ }}\sqrt 2 } \right)^6}\)
c) \({\left( {x - {1 \over x}} \right)^{13}}\)
Bài giải:
a) Theo dòng 5 của tam giác Pascal, ta có:
\({(a + 2b)^5} = {a^5} + 5{a^4}.2b + 10{a^3}.{(2b)^2} + 10{a^2}{(2b)^3}\)
\(+ 5a.{(2b)^4} + {(2b)^5}\)\(={a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}\)
b) Theo dòng 6 của tam giác Pascal, ta có:
\({\left( {a - \sqrt 2 } \right)^6} = {a^6} + 6{a^5}\left( { - \sqrt 2 } \right) + 15{a^4}{\left( { - \sqrt 2 } \right)^2} \)
\(+ 20{a^3}{\left( { - \sqrt 2 } \right)^3} + 15{a^{^2}}{\left( { - \sqrt 2 } \right)^4} + 6a{\left( { - \sqrt 2 } \right)^5}\)
\(+ {\left( { - \sqrt 2 } \right)^6}\)\(={a^6} - 6\sqrt 2 {a^5} + 30{a^4}- 40\sqrt 2 {a^3}\)
\(+ 60{a^2} - 24\sqrt 2 a + 8\)
c) Theo công thức nhị thức Niu – Tơn, ta có:
\({\left( {x - {1 \over x}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k{x^{13 - k}}{{\left( { - {1 \over x}} \right)}^k} = }\)
\(\sum\limits_{k = 0}^{13} {C_{13}^k{{( - 1)}^k}{x^{13 - 2k}}} \)
Nhận xét: Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.