Giải câu 57 trang 177 SGK Đại số và Giải tích 11 Nâng cao
Cho một cấp số nhân (un), trong đó
- Bài học cùng chủ đề:
- Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao
- Câu 59 trang 178 SGK Đại số và Giải tích 11 Nâng cao
- Câu 60 trang 178 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho một cấp số nhân (un), trong đó
\(243{u_8} = 32{u_3}\,\text{ với }\,{u_3} \ne 0.\)
a. Tính công bội của cấp số nhân đã cho.
b. Biết rằng tổng của cấp số nhân đã cho bằng \({3^5},\) tính u1.
Giải:
a. Ta có: \({u_8} = {u_3}{q^5}\) với q là công bội của cấp số nhân.
Thay vào đẳng thức đã cho, ta được :
\(243{u_3}{q^5} = 32{u_3}\)
Vì u3≠ 0 nên : \({q^5} = {{32} \over {243}} = {\left( {{2 \over 3}} \right)^5} \Leftrightarrow q = {2 \over 3}\)
b. Tổng của cấp số nhân lùi vô hạn đó là \(S = {{{u_1}} \over {1 - q}}.\)
Từ đó, ta có :
\({3^5} = {{{u_1}} \over {1 - {2 \over 3}}},\text{ do đó }\,{u_1} = {3^4} = 81\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học