Giải câu 36 trang 68 SGK Hình học 11 Nâng cao

Cho hình lăng trụ đứng tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’.

Cho hình lăng trụ đứng tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’.

a. Chứng minh rằng đường thẳng CB’ song song với mp(AHC’)

b. Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (A’BC). Chứng minh rằng d song song với mp(BB’C’C)

c. Xác định thiết diện của hình lăng trụ ABC.A’B’C’khi cắt bởi mp(H , d)

Giải

a) Chứng minh CB' // (AHC’)

Ta tìm trong (AHC’) một đường thẳng song song với CB’, muốn vậy ta tìm giao tuyến của một mặt phẳng chứa CB’ với (AHC’), đó là (A’CB’).

Gọi O là giao điểm AC’ và A’C.

AA’C’C là hình bình hành nên O là trung điểm của A’C.

Do đó HO là đường trung bình của ∆A’B’C

⇒ HO // B’C ⇒ B’C // (AHC’). ( vì HO \(\subset\) (AHC’)).

b) Tìm giao tuyến d của (AB’C’) và (A’BC).

Gọi O’ là giao điểm của AB’ và A’B thì O, O’ là hai điểm chung của hai mặt phẳng (AB’C’) và (A’BC) nên (AB’C’) ∩ (A’BC) = OO’

Vậy d = OO’. Ta có O’ là trung điểm của AB’ ( vì AA’B’B là hình bình hành).

⇒ OO’ là đường trung bình của ∆AB’C’.

⇒ OO’ // B’C' // BC ⇒ OO’ // (BB’C’C) ⇒ d // (BB’C’C)

c) Gọi {K} = HO’ ∩ AB thì HK // AA’

Qua O kẻ ML // AA’ ( M ∈ A’C’, L ∈ AC).

Thiết diện cần tìm là hình bình hành HKLM.

dayhoctot.com

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật