Giải câu 5 trang 120 SGK Hình học 11 Nâng cao
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.
- Bài học cùng chủ đề:
- Câu 6 trang 120 SGK Hình học 11 Nâng cao
- Câu 7 trang 121 SGK Hình học 11 Nâng cao
- Câu 8 trang 121 SGK Hình học 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.
Giải
Vì OA, OB, OC đôi một vuông góc và H là hình chiếu của O trên mp(ABC) nên H là trực tâm tam giác ABC. Từ đó HC1 ⊥ AB (C1 là giao điểm của CH và AB), suy ra OC1 ⊥ AB. Như vậy \(\widehat {O{C_1}H}\) là góc giữa mp(OAB) và mp(ABC).
Ta có: \({S_{HAB}} = {S_{OAB}}\cos \widehat {O{C_1}H}\)
Mà \(\widehat {O{C_1}H} = \widehat {HOC}\) nên \({S_{HAB}} = {S_{OAB}}\cos \widehat {HOC}.\)
Ta lại có : \(\cos \widehat {HOC} = {{OH} \over {OC}},{1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)
Từ đó : \(\cos \widehat {HOC} = {{ab} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}\)
Mặt khác \({S_{OAB}} = {1 \over 2}ab\)
Vậy \({S_{HAB}} = {{{a^2}{b^2}} \over {2\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}\)
Tương tự như trên, ta có :
\(\eqalign{ & {S_{HBC}} = {{{b^2}{c^2}} \over {2\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }} \cr & {S_{HAC}} = {{{c^2}{a^2}} \over {2\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }} \cr} \)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học