Giải câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao

Tính

a.  \(\mathop {\lim }\limits_{x \to 1} \left[ {{2 \over {{{\left( {x - 1} \right)}^2}}}.{{2x + 1} \over {2x - 3}}} \right]\)

b.  \(\mathop {\lim }\limits_{x \to 1} {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}}\)

Giải

a. Ta có:  \(\mathop {\lim }\limits_{x \to 1} {2 \over {{{\left( {x - 1} \right)}^2}}} = + \infty \,\text{ và }\,\mathop {\lim }\limits_{x \to 1} {{2x + 1} \over {2x - 3}} = {3 \over { - 1}} = - 3 < 0\)

Do đó  \(\mathop {\lim }\limits_{x \to 1} \left[ {{2 \over {{{\left( {x - 1} \right)}^2}}}.{{2x + 1} \over {2x - 3}}} \right] = - \infty \)

b.

\(\eqalign{
& {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = {1 \over {{{\left( {x - 1} \right)}^2}}}.{5 \over {x - 2}} \cr
& \text{vì}\,\mathop {\lim }\limits_{x \to 1} {1 \over {{{\left( {x - 1} \right)}^2}}} = + \infty \,\text{ và }\,\mathop {\lim }\limits_{x \to 1} {5 \over {x - 2}} = - 5 < 0 \cr
& \text{ nên }\,\mathop {\lim }\limits_{x \to 1} {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = - \infty \cr} \)

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật