Giải câu 20 trang 103 SGK Hình học 11 Nâng cao
a. Cho tứ diện ABCD có AB ⊥ CD, AC ⊥ BD. Chứng minh rằng AD ⊥ BC. Vậy, các cạnh đối diện của tứ diện đó vuông góc với nhau. Tứ diện như thế gọi là tứ diện trực tâm.
a. Cho tứ diện ABCD có AB ⊥ CD, AC ⊥ BD. Chứng minh rằng AD ⊥ BC. Vậy, các cạnh đối diện của tứ diện đó vuông góc với nhau. Tứ diện như thế gọi là tứ diện trực tâm.
b. Chứng minh các mệnh đề sau đây là tương đương :
i. ABCD là tứ diện trực tâm.
ii. Chân đường cao của tứ diện hạ từ một đỉnh trùng với trực tâm của mặt đối diện.
iii. \(A{B^2} + C{D^2} = A{C^2} + B{D^2} = A{D^2} + B{C^2}\)
c. Chứng minh rằng bốn đường cao của tứ diện trực tâm đồng quy tại một điểm. Điểm đó gọi là trực tâm của tứ diện nói trên.
Giải
a. Kẻ AH ⊥ (BCD), H ϵ (BCD)
Ta có \(\left\{ {\matrix{ {CD \bot AH} \cr {CD \bot AB} \cr } } \right. \Rightarrow CD \bot \left( {ABH} \right)\)
Mà BH ⊂ (ABH) nên CD ⊥ BH (1)
Tương tự \(\left\{ {\matrix{ {BD \bot AH} \cr {BD \bot AC} \cr } } \right. \Rightarrow BD \bot \left( {ACH} \right) \Rightarrow BD \bot CH\,\left( 2 \right)\)
Từ (1) và (2) suy ra H là trực tâm tam giác BCD.
Ta có: \(\left\{ {\matrix{ {BC \bot AH} \cr {BC \bot DH} \cr } } \right. \Rightarrow BC \bot \left( {ADH} \right) \Rightarrow BC \bot AD.\)
b. Theo chứng minh câu a ta có i ⇔ ii
Mặt khác ta có
\(\eqalign{ & A{B^2} + C{D^2} = A{C^2} + B{D^2} \cr & \Leftrightarrow {\overrightarrow {AB} ^2} + {\overrightarrow {CD} ^2} = {\overrightarrow {AC} ^2} + {\overrightarrow {BD} ^2} \cr & \Leftrightarrow {\overrightarrow {AB} ^2} + {\left( {\overrightarrow {AD} - \overrightarrow {AC} } \right)^2} = {\overrightarrow {AC} ^2} + {\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)^2} \cr & \Leftrightarrow \overrightarrow {AD} .\overrightarrow {AC} = \overrightarrow {AD} .\overrightarrow {AB} \cr & \Leftrightarrow \overrightarrow {AD} .\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = 0 \cr & \Leftrightarrow \overrightarrow {AD} .\overrightarrow {BC} = 0 \Leftrightarrow AD \bot BC \cr} \)
Tương tự AB ⊥ CD và AC ⊥ BD
Vậy i ⇔ iii
c. Gọi K là trực tâm tam giác ACD thì K nằm trên AI (với BI ⊥ CD). Từ đó suy ra AH và BK cắt nhau do chúng thuộc mp(ABI)
tương tự bốn đường cao của tứ diện trực tâm cắt nhau đôi một và không cùng nằm trên một mặt phẳng nên chúng đồng quy.
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học