Giải câu 27 trang 112 SGK Hình học 11 Nâng cao

Cho hai tam giác ACD, BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Gọi I, J lần lượt là trung điểm của AB và CD.

Cho hai tam giác ACD, BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Gọi I, J lần lượt là trung điểm của AB và CD.

a. Tính AB, IJ theo a và x.

b. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc ?

Giải

a. Vì J là trung điểm của CD và AC = AD nên AJ ⊥ CD.

Do mp(ACD) ⊥ mp(BCD) nên AJ ⊥ mp(BCD)

Mặt khác, AC = AD = BC = BD nên tam giác AJB vuông cân, suy ra \(AB = AJ\sqrt 2 ,A{J^2} = {a^2} - {x^2}\,hay\,AJ = \sqrt {{a^2} - {x^2}} .\)

Vậy \(AB = \sqrt {2\left( {{a^2} - {x^2}} \right)} \) với a > x

Do IA = IB, tam giác AJB vuông tại J nên \(JI = {1 \over 2}AB,\) tức là \(IJ = {1 \over 2}\sqrt {2\left( {{a^2} - {x^2}} \right)} .\)

Rõ ràng là CI và DI vuông góc với AB.

Vậy mp(ABC) ⊥ mp(ABD) \( \Leftrightarrow \widehat {CID} = 90^\circ \)

\( \Leftrightarrow IJ = {1 \over 2}CD \Leftrightarrow {1 \over 2}\sqrt {2\left( {{a^2} - {x^2}} \right)}  = {1 \over 2}.2x\)

\(\Leftrightarrow x = {{a\sqrt 3 } \over 3}\)

Các bài học liên quan
Câu 32 trang 117 SGK Hình học 11 Nâng cao
Câu 35 trang 118 SGK Hình học 11 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật