Giải câu 2 trang 120 SGK Hình học 11 Nâng cao
Cho hình chóp S.ABC có SA = Sb = SC = a,
- Bài học cùng chủ đề:
- Câu 3 trang 120 SGK Hình học 11 Nâng cao
- Câu 4 trang 120 SGK Hình học 11 Nâng cao
- Câu 5 trang 120 SGK Hình học 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho hình chóp S.ABC có SA = SB = SC = a, \(\widehat {ASB} = 120^\circ ,\widehat {BSC} = 60^\circ ,\widehat {CSA} = 90^\circ \) .
a. Chứng tỏ rằng ABC là tam giác vuông
b. Tính khoảng cách từ S đến mặt phẳng (ABC)
Giải
a. Ta có:
\(\eqalign{ & \overrightarrow {CA} .\overrightarrow {CB} = \left( {\overrightarrow {SA} - \overrightarrow {SC} } \right)\left( {\overrightarrow {SB} - \overrightarrow {SC} } \right) \cr & = \overrightarrow {SA} .\overrightarrow {SB} - \overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SC} .\overrightarrow {SB} + S{C^2} \cr & = {a^2}\cos 120^\circ - {a^2}\cos 90^\circ - {a^2}\cos 60^\circ + {a^2} \cr & = {a^2} - {{{a^2}} \over 2} - {{{a^2}} \over 2} = 0 \cr & \Rightarrow CA \bot CB \cr} \)
⇒ ΔABC vuông tại C.
b. Kẻ SH ⊥ mp(ABC), do SA = SB = SC nên HA = HB = HC mà ΔABC vuông tại C nên H là trung điểm của AB. Ta có:
\(S{H^2} = S{A^2} - {{A{B^2}} \over 4} = {a^2} - {{3{a^2}} \over 4} = {{{a^2}} \over 4}\)
\(\Rightarrow SH = {a \over 2}\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học