Giải câu 1 trang 130 SGK Đại số và Giải tích 11 Nâng cao
Chứng minh rằng
- Bài học cùng chủ đề:
- Câu 2 trang 130 SGK Đại số và Giải tích 11 Nâng cao
- Câu 3 trang 130 SGK Đại số và Giải tích 11 Nâng cao
- Câu 4 trang 130 SGK Đại số và Giải tích 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 1. Chứng minh rằng các dãy số với số hạng tổng quát sau đây có giới hạn 0 :
a. \({{{{\left( { - 1} \right)}^n}} \over {n + 5}}\)
b. \({{\sin n} \over {n + 5}}\)
c. \({{\cos 2n} \over {\sqrt n + 1}}\)
Giải:
a. Ta có:
\(\left| {{{{{\left( { - 1} \right)}^n}} \over {n + 5}}} \right| = {1 \over {n + 5}} < {1 \over n}\,\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {{{{\left( { - 1} \right)}^n}} \over {n + 5}} = 0\)
b. \(\left| {{{\sin n} \over {n + 5}}} \right| \le {1 \over {n + 5}} < {1 \over n}\,\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {{\sin n} \over {n + 5}} = 0\)
c. \(\left| {{{\cos 2n} \over {\sqrt n + 1}}} \right| \le {1 \over {\sqrt n + 1}} < {1 \over {\sqrt n }},\lim{1 \over {\sqrt n }} = 0 \Rightarrow \lim {{\cos 2n} \over {\sqrt n + 1}} = 0\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học