Giải bài 32 trang 120 - Sách giáo khoa toán 7 tập 1
Bài 32. Tìm các tia phân giác trên hình 91. Hãy chứng minh điều đó.
Bài 32. Tìm các tia phân giác trên hình 91. Hãy chứng minh điều đó.
Giải:
Xét \(∆AHB\) và \(∆KHB\) có
+) \(AH=KH\) (gt)
+) \(\widehat{AHB }=\widehat{KHB }\) (\(=90^0\))
+) \(BH\) cạnh chung .
Suy ra \(∆AHB=∆KHB\) (c.g.c)
suy ra: \(\widehat{ABH }=\widehat{KBH }\) (hai góc tương ứng)
Vậy \(BH\) là tia phân giác của góc \(B\).
Xét \(∆AHC\) và \(∆KHC\)
+) \(HC\) cạnh chung
+) \(\widehat{AHC }=\widehat{KHC }\) (\(=90^0\))
+) \(HA=HK\) (gt)
Suy ra \(∆AHC =∆KHC\) (c.g.c)
Suy ra: \(\widehat{ACH }=\widehat{KC H }\) (hai góc tương ứng).
Vậy \(CH\) là tia phân giác của góc \(C\)
Trên đây là bài học "Giải bài 32 trang 120 - Sách giáo khoa toán 7 tập 1" mà dayhoctot.com muốn gửi tới các em. Để rèn luyện về kỹ năng làm bài thi và kiểm tra các em tham khảo tại chuyên mục "Đề thi học kì 1 lớp 7" nhé.
Nếu thấy hay, hãy chia sẻ tới bạn bè để cùng học và tham khảo nhé! Và đừng quên xem đầy đủ các bài Giải bài tập Toán Lớp 7 của dayhoctot.com.
Các bài học liên quan
Bài 36. Trên hình 100 ta có OA=OB, OAC=OBD.
Bài 37. Trên mỗi hình 101,102,103 có tam giác nào bằng nhau? Vì sao?
Bài 38. Trên hình 104 ta có AB//CD, AC//BD. Hãy chứng minh rằng AB=CD,AC=BD.
Bài 39. Trên mỗi hình 105,106,108 các tam giác vuông nào bằng nhau? Vì sao?
Bài 40. Cho tam giác ABC(AB≠AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax(E ∈ Ax, F∈Ax ). So sánh độ dài
Bài 41. Cho tam giác ABC, cac tia phân giác của các góc B và C....
Bài 43. Cho góc xOy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA
Các chương học và chủ đề lớn
Học tốt các môn khác lớp 7