Giải câu 47 trang 75 SGK Hình học 11 Nâng cao
Cho hình hộp ABCD.A1B1C1D1. Tìm điểm I trên đường chéo B1D và điểm J trên đường chéo AC sao cho IJ // BC1. Tính tỉ số
Cho hình hộp ABCD.A1B1C1D1. Tìm điểm I trên đường chéo B1D và điểm J trên đường chéo AC sao cho IJ // BC1. Tính tỉ số \({{ID} \over {I{B_1}}}\)
Giải
Giả sử, ta tìm được I ∈ B1D, J ∈ AC sao cho IJ // BC1
Xét phép chiếu song song theo phương BC1 lên mp(ABCD). Khi đó hình chiếu của các điểm I , D, B1 lần lượt là J, D , B1’
Do D, I ,B1 thẳng hàng nên D, J, B1’ thẳng hàng
Vậy J chính là giao điểm của hai đường thẳng B’1D và AC. Từ đó ta có thể tìm I, J như sau:
- Dựng B’1 là hình chiếu B1 qua phép chiếu song song ở trên (BC1B1B’1 là hình bình hành)
- Dựng J là giao điểm của B’1D với AC
- Trong mp(B1B’1D) kẻ JI song song với B1B’1 cắt B1D tại I
Rõ ràng I và J thỏa mãn điều kiện của bài toán
Dễ thấy B’1 thuộc đường thẳng BC và \(AD = {1 \over 2}B{'_1}C\)
Từ đó suy ra : \({{ID} \over {I{B_1}}} = {{ID} \over {JB{'_1}}} = {{AD} \over {B{'_1}C}} = {1 \over 2}\)
Vậy ta có: \({{ID} \over {I{B_1}}} = {1 \over 2}\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học