Giải câu 41 trang 166 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau:

Tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right)\)

b.  \(\mathop {\lim }\limits_{x \to 1} {{\sqrt {2x - {x^2}} - 1} \over {{x^2} - x}}\)

Giải:

a. Dạng ∞ - ∞

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{{x^2} + 1 - {x^2}} \over {\sqrt {{x^2} + 1} + x}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)

b. Dạng  \({0 \over 0}\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to 1} {{\sqrt {2x - {x^2}} - 1} \over {{x^2} - x}} = \mathop {\lim }\limits_{x \to 1} {{2x - {x^2} - 1} \over {x\left( {x - 1} \right)\left( {\sqrt {2x - {x^2}} + 1} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 1} {{ - {{\left( {x - 1} \right)}^2}} \over {x\left( {x - 1} \right)\left( {\sqrt {2x - {x^2}} + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} {{1 - x} \over {x\left( {\sqrt {2x - {x^2}} + 1} \right)}} = 0 \cr} \)

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật