Giải câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao

a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0

Cho hàm số \(y = \left| x \right|\)

a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0

b. Tính đạo hàm của hàm số tại x = 0, nếu có.

c. Mệnh đề “Hàm số liên tục tại điểm x0 thì có đạo hàm tại x0 ” đúng hay sai ?

Giải:

a. Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left| x \right| = 0 = f\left( 0 \right)\)

Vậy f liên tục tại x = 0

b. Ta có:

\(\eqalign{  & \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {x \over x} = 1  \cr  & \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over x} =  - 1 \cr} \)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over x}\) nên hàm số f không có đạo hàm tại x = 0

c. Mệnh đề sai. Thật vậy, hàm số \(f\left( x \right) = \left| x \right|\) liên tục tại điểm 0 (theo câu a) nhưng không có đạo hàm tại điểm đó (theo câu b).

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật