Giải bài 8 trang 134 SGK Toán 9 tập 2

Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').

Bài 8. Cho hai đường tròn \((O; R)\) và \((O'; r)\) tiếp xúc ngoài (\(R > r\)). Hai tiếp tuyến chung \(AB\) và \(A'B'\) của hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(P\) (\(A\) và \(A'\) thuộc đường tròn \((O')\), \(B\) và \(B'\) thuộc đường tròn \((O)\)). Biết \(PA = AB = 4 cm\). Tính diện tích hình tròn \((O')\).

Hướng dẫn làm bài:

Vì \(AB\) là tiếp tuyến chung của \((O)\) và  \((O’)\) nên \(OB \bot AB\) và \(O’A \bot AB\)

Xét hai tam giác vuông \(OPB\) và \(O’AP\), ta có:

\(\widehat A = \widehat B = {90^0}\) 

\(\widehat {{P_1}}\) chung

Vậy \(ΔOBP\) đồng dạng \(∆ O’AP\)

\(\eqalign{
& \Rightarrow {r \over R} = {{PO'} \over {PO}} = {{PA} \over {PB}} = {4 \over 8} = {1 \over 2} \cr
& \Rightarrow R = 2{\rm{r}} \cr} \)

Ta có \(PO’ = OO’ = R + r = 3r\) (do \(AO’\) là đường trung bình của \(∆OBP\))

Áp dụng định lí Py-ta-go trong tam giác vuông \(O’AP\)

\(O’P^2 = O’A^2 + AP^2\) hay \({\left( {3r} \right)^2} = {\rm{ }}{r^2} + {\rm{ }}{4^{2}} \Leftrightarrow {\rm{ }}9{r^2} = {\rm{ }}{r^2} + {\rm{ }}16{\rm{ }}\)

\( \Leftrightarrow {\rm{ }}8{\rm{ }}{r^2} = 16{\rm{ }} \Leftrightarrow {\rm{ }}{r^2} = {\rm{ }}2\)

Diện tích đường tròn \((O’;r)\) là:

\(S = π. r^2 = π.2 = 2π\) (\(cm^2\))

Các bài học liên quan
Bài 13 trang 135 SGK Toán 9 tập 2
Bài 15 trang 135 SGK Toán 9 tập 2
Bài 16 trang 135 SGK Toán 9 tập 2
Bài 17 trang 135 SGK Toán 9 tập 2
Bài 18 trang 135 SGK Toán 9 tập 2

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật