Giải bài 8 trang 134 SGK Toán 9 tập 2
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
- Bài học cùng chủ đề:
- Bài 9 trang 135 SGK Toán 9 tập 2
- Bài 10 trang 135 SGK Toán 9 tập 2
- Bài 11 trang 135 SGK Toán 9 tập 2
- Ngữ pháp tiếng anh hay nhất
Bài 8. Cho hai đường tròn \((O; R)\) và \((O'; r)\) tiếp xúc ngoài (\(R > r\)). Hai tiếp tuyến chung \(AB\) và \(A'B'\) của hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(P\) (\(A\) và \(A'\) thuộc đường tròn \((O')\), \(B\) và \(B'\) thuộc đường tròn \((O)\)). Biết \(PA = AB = 4 cm\). Tính diện tích hình tròn \((O')\).
Hướng dẫn làm bài:
Vì \(AB\) là tiếp tuyến chung của \((O)\) và \((O’)\) nên \(OB \bot AB\) và \(O’A \bot AB\)
Xét hai tam giác vuông \(OPB\) và \(O’AP\), ta có:
\(\widehat A = \widehat B = {90^0}\)
\(\widehat {{P_1}}\) chung
Vậy \(ΔOBP\) đồng dạng \(∆ O’AP\)
\(\eqalign{
& \Rightarrow {r \over R} = {{PO'} \over {PO}} = {{PA} \over {PB}} = {4 \over 8} = {1 \over 2} \cr
& \Rightarrow R = 2{\rm{r}} \cr} \)
Ta có \(PO’ = OO’ = R + r = 3r\) (do \(AO’\) là đường trung bình của \(∆OBP\))
Áp dụng định lí Py-ta-go trong tam giác vuông \(O’AP\)
\(O’P^2 = O’A^2 + AP^2\) hay \({\left( {3r} \right)^2} = {\rm{ }}{r^2} + {\rm{ }}{4^{2}} \Leftrightarrow {\rm{ }}9{r^2} = {\rm{ }}{r^2} + {\rm{ }}16{\rm{ }}\)
\( \Leftrightarrow {\rm{ }}8{\rm{ }}{r^2} = 16{\rm{ }} \Leftrightarrow {\rm{ }}{r^2} = {\rm{ }}2\)
Diện tích đường tròn \((O’;r)\) là:
\(S = π. r^2 = π.2 = 2π\) (\(cm^2\))