Giải bài 11 trang 135 SGK Toán 9 tập 2
Từ một điểm P ở ngoài đường tròn (O), kẻ cát tuyến PAB và PCD tới đường tròn. Gọi Q là một điểm nằm trên cung nhỏ BD (không chứa A và C) sao cho sđ cung BQ = 42° và sđ cung QD = 38°. Tính tổng
Bài 11. Từ một điểm \(P\) ở ngoài đường tròn \((O)\), kẻ cát tuyến \(PAB\) và \(PCD\) tới đường tròn. Gọi \(Q\) là một điểm nằm trên cung nhỏ \(BD\) (không chứa \(A\) và \(C\)) sao cho \(sđ\overparen{BQ}=42^0\) và \(sđ\overparen{QD}=38^0\). Tính tổng \(\widehat {BP{\rm{D}}} + \widehat {AQC}\)
Hướng dẫn làm bài:
Ta có \(\widehat {BP{\rm{D}}}\) là góc ở ngoài đường tròn (O) nên:
\(\widehat {BPD} = {sđ\overparen{BQD} -sđ\overparen{AC}\over 2}\)
Ta có \(\widehat {AQC}\) là góc nội tiếp trong đường tròn (O) nên:
\(\widehat {AQC} = {1 \over 2}sđ\overparen{AC}\)
Do đó:
\(\widehat {BPD} + \widehat {AQC} = {sđ\overparen{BQD} -sđ\overparen{AC} \over 2} + {1 \over 2}sđ\overparen{AC}\)
=\({1 \over 2}sđ\overparen{BQD}\)=\({{{{42}^0} + {{38}^0}} \over 2} = {40^0}\)
Vậy \(\widehat {BP{\rm{D}}} + \widehat {AQC} = {40^0}\)
Trên đây là bài học "Giải bài 11 trang 135 SGK Toán 9 tập 2" mà dayhoctot.com muốn gửi tới các em. Để rèn luyện về kỹ năng làm bài thi và kiểm tra các em tham khảo tại chuyên mục "Đề thi học kì 1 lớp 9" nhé.
Nếu thấy hay, hãy chia sẻ tới bạn bè để cùng học và tham khảo nhé! Và đừng quên xem đầy đủ các bài Giải bài tập Toán Lớp 9 của dayhoctot.com.
Các bài học liên quan
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
Một mặt phẳng chứa trụ OO' của một hình trụ; phần mặt phẳng nằm trong hình trụ là một hình chữ nhật có chiều dài 3cm, chiều rộng 2cm.Tính diện tích xung quanh và thể tích hình trụ đó.
Khi quay tam giác ABC vuông ở A một vòng quanh cạnh góc vuông AC cố định, ta được một hình nón. Biết rằng BC = 4dm, góc ACB = 30o. Tính diện tích xung quanh và thể tích hình nón.
Một hình cầu có số đo diện tích (đơn vị: m2) bằng số đo thể tích (đơn vị: m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu.
Căn bậc hai số học Căn bậc hai của một số a không âm là số x sao cho x2 = a. Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là √a và số âm kí hiệu là -√a. Số 0 có đúng một căn bậc hai là chính số 0, ta viết √0 = 0.
1. Định lí. Với các số a và b không âm ta có: √(a.b)= √a.√b.
1. Định lí. Với số a không âm và số b dương ta có
Các chương học và chủ đề lớn
Học tốt các môn khác lớp 9