Giải câu 9 trang 13 SGK Hình học 11 Nâng cao

Cho góc nhọn

Bài 9. Cho góc nhọn xOy và một điểm A nằm trong góc đó. Hãy xác định điểm B trên Ox và điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất

Giải 

Xét tam giác bất kì ABC có B và C lần lượt nằm trên hai tia Ox và Oy.

Gọi A’ và A” là các điểm đối xứng với điểm A lần lượt qua các đường thẳng Ox và Oy.

Ta có \(AB = A’B\) và \(AC = A”C\) ( do các \(△ABA’\) và \(△ACA”\) là các tam giác cân).

Gọi \(2p\) là chu vi của tam giác ABC thì: \(2p = AB + BC + CA = A’B + BC + CA” ≥ A’A”\)

Dấu “=” xảy ra khi bốn điểm \(A’, B, C, A”\) thẳng hàng.

Suy ra để chu vi tam giác ABC bé nhất thì phải lấy B và C lần lượt là giao điểm của đoạn thẳng A’A” với hai tia Ox và Oy (các giao điểm đó tồn tại vì góc xOy nhọn)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật