Giải câu 8 trang 126 SGK Hình học 11 Nâng cao
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng
- Bài học cùng chủ đề:
- Câu 9 trang 126 SGK Hình học 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt 2 .\)
a. Tính khoảng cách từ S đến mp(ABCD).
b. Tính khoảng cách giữa đường thẳng AB và mp(SCD)
c. Tính khoảng cách giữa hai đường thẳng AB và SC.
d. Gọi P là mặt phẳng đi qua A và vuông góc với SC. Hãy xác định thiết diện của hình chóp khi cắt bởi (P). Tính diện tích thiết diện.
e. Tính góc giữa đường thẳng AB và mp(P).
Giải
Gọi H là giao điểm của AC và BD. Do S.ABCD là hình chóp đều nên SH vuông góc với mặt đáy (ABCD).
a. Khoảng cách từ S đến mp(ABCD) là SH.
SAC là tam giác đều cạnh \(a\sqrt 2 \) nên \(SH = a\sqrt 2 .{{\sqrt 3 } \over 2} = {{a\sqrt 6 } \over 2}\)
b. Gọi E, F lần lượt là trung điểm của AB và CD.
Ta có: d(AB ; (SCD)) = d(E; (SCD)) = EK
(EK là đường cao của tam giác SEF).
\(EK = {{EF.SH} \over {SF}} = {{a.{{a\sqrt 6 } \over 2}} \over {\sqrt {{{6{a^2}} \over 4} + {{{a^2}} \over 4}} }} = {{a\sqrt 6 } \over {\sqrt 7 }} = {{a\sqrt {42} } \over 7}\)
c. Vì AB và SC chéo nhau, AB // mp(SCD) nên d(AB ; SC) = d(AB ; (SCD)) = \({{a\sqrt {42} } \over 7}\)
d.
Gọi C1 là trung điểm của SC, do SAC là tam giác đều nên AC1 ⊥ SC. Mặt khác, BD ⊥ SC, nên (P) chính là mặt phẳng chứa AC1 và song song với BD. Kí hiệu H1 là giao điểm của AC1 và SH. Khi đó (P) ∩ (SBD) = B1D1, trong đó B1D1 đi qua H1 và song song với BD. Vậy thiết diện của S.ABCD cắt bởi (P) là tứ giác AB1C1D1.
Ta có: BD ⊥ (SAC), B1D1 // BD
Nên B1D1 ⊥ (SAC), suy ra B1D1 ⊥ AC1.
Từ đó \({S_{A{B_1}{C_1}{D_1}}} = {1 \over 2}A{C_1}.{B_1}{D_1}\)
\(A{C_1} = {{a\sqrt 6 } \over 2},{B_1}{D_1} = {2 \over 3}BD\) (vì H1 là trọng tâm tam giác SAC)
Vì vậy \({S_{A{B_1}{C_1}{D_1}}} = {1 \over 2}.{{a\sqrt 6 } \over 2}.{2 \over 3}a\sqrt 2 = {{{a^2}\sqrt 3 } \over 3}\)
e. Trong mp(SAC), kẻ HI song song với CC1 cắt AC1 tại I thì HI ⊥ (P) vì SC ⊥ (P).
Ta lấy điểm J sao cho BHIJ là hình bình hành thì BJ ⊥ (P), từ đó \(\widehat {BAJ}\) là góc giữa BA và mp(P).
\(\sin \widehat {BAJ} = {{BJ} \over {BA}} = {{HI} \over {BA}} = {{{1 \over 2}C{C_1}} \over {BA}}\)
\(= {{{1 \over 4}SC} \over {BA}} = {{{1 \over 4}a\sqrt 2 } \over a} = {{\sqrt 2 } \over 4}\)
Vậy góc giữa BA và mp(P) là α mà \(\sin \alpha = {{\sqrt 2 } \over 4},0^\circ < \alpha < 90^\circ .\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học