Giải câu 33 trang 118 SGK Hình học 11 Nâng cao
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
- Bài học cùng chủ đề:
- Câu 34 trang 118 SGK Hình học 11 Nâng cao
- Câu 35 trang 118 SGK Hình học 11 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và \(\widehat {BAD} = \widehat {BAA'} = \widehat {DAA'} = 60^\circ .\) Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
Giải
Từ giả thiết suy ra các tam giác A’AD, BAD, A’AB là các tam giác cân cùng có góc ở đỉnh bằng 60˚ nên chúng là các tam giác đều. Như vậy tứ diện A’ABD có các cạnh cùng bằng a hay A’ABD là tứ diện đều. Khi đó hình chiếu của A’ trên mp(ABCD) chính là trọng tâm H của tam giác đều ABD. Khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’) chính là độ dài A’H. Ta có:
\(A'{H^2} = AA{'^2} - A{H^2}\)
\(= {a^2} - {\left( {{{a\sqrt 3 } \over 3}} \right)^2} = {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3}\)
Vậy \(A'H = {{a\sqrt 6 } \over 3}\)
- Chương i. hàm số lượng giác và phương trình lượng giác
- Chương ii. tổ hợp và xác suất
- Chương iii. dãy số. cấp số cộng và cấp số nhân
- Chương iv. giới hạn
- Chương v. đạo hàm
- Ôn tập cuối năm đại số và giải tích
- Chương i. phép dời hình và đồng dạng trong mặt phẳng
- Chương ii: đường thẳng và mặt phẳng trong không gian. quan hệ song song
- Chương iii: vectơ trong không gian. quan hệ vuông góc
- Ôn tập cuối năm hình học