Giải câu 13 trang 18 SGK Hình học 11 Nâng cao

Cho hai tam giác vuông cân OAB

Bài 13. Cho hai tam giác vuông cân OAB và OA'B' có chung đỉnh O sao cho O nằm trên đoạn thẳng A'B' và nằm ngoài đoạn thẳng A'B (h.16). Gọi G và G' lần lượt là trọng tâm các tam giác OAA' và OBB'.Chứng minh GOG' là tam giác vuông cân.

Giải 

Gọi Q là phép quay tâm O, góc quay \({\pi \over 2}\) (bằng góc lượng giác (OA ; OB)). Khi đó Q biến A thành B và biến A’ thành B’, tức là biến tam giác OAA’ và OBB’

Bởi vậy Q biến G (trọng tâm tam giác OAA’) thành G’ (trọng tâm tam giác OBB’).

Suy ra \(OG = OG’\) và \(\widehat {GOG'} = {\pi \over 2}\)

Vậy GOG’ là tam giác vuông cân tại đỉnh O

Chú ý: Phép quay Q biến trọng tâm G tam giác ABC thành trọng tâm G’ của tam giác A’B’C’ ảnh của △ABC qua Q được suy ra từ phép quay Q biến trung điểm I của đoạn thẳng

Các bài học liên quan
Câu 22 trang 23 SGK Hình học 11 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật