Bài 1 trang 134 SGK Toán 9 tập 2
Chu vi hình chữ nhật ABCD là 20cm. Hãy tìm giá trị nhỏ nhất của độ dài đường chéo AC.
Bài 1. Chu vi hình chữ nhật \(ABCD\) là \(20cm\). Hãy tìm giá trị nhỏ nhất của độ dài đường chéo \(AC\).
Hướng dẫn trả lời:
Giải
Gọi \(x\) (\(cm\)) là độ dài cạnh \(AB\) (\(x > 0\)). Theo đề bài thì độ dài cạnh \(BC\) là \((10 – x)\)
Áp dụng định lí Py-ta-go trong tam giác vuông \(ABC\), ta có:
\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} \cr
& = {x^2} + {\left( {10 - x} \right)^2} \cr
& = 2\left( {{x^2} - 10{\rm{x}} + 50} \right) \cr
& = 2\left[ {{{\left( {x - 5} \right)}^2} + 25} \right] \cr
& A{C^2} = 2{\left( {x - 5} \right)^2} + 50 \ge 50 \cr}\)
Đẳng thức xảy ra khi : \(x – 5 = 0 ⇔ x = 5\)
Vậy giá trị nhỏ nhất của đường chéo AC là \(\sqrt50 = 5\sqrt2\) (\(cm\))
Trên đây là bài học "Bài 1 trang 134 SGK Toán 9 tập 2" mà dayhoctot.com muốn gửi tới các em. Để rèn luyện về kỹ năng làm bài thi và kiểm tra các em tham khảo tại chuyên mục "Đề thi học kì 1 lớp 9" nhé.
Nếu thấy hay, hãy chia sẻ tới bạn bè để cùng học và tham khảo nhé! Và đừng quên xem đầy đủ các bài Giải bài tập Toán Lớp 9 của dayhoctot.com.
Các bài học liên quan
Tam giác ABC vuông tại C có AC = 15cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16cm. Tính diện tích tam giác ABC.
Một hình chữ nhật cắt đường tròn như hình 121 biết AB = 4, BC = 5, DE = 3 (với cùng đơn vị đo).
Cho tam giác đều ABC, O là trung điểm của BC. Trên các cạnh AB, AC lần lượt lấy các điểm di động D và E sao cho góc DOE = 60o.
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
Cho tam giác ABC nội tiếp đường tròn (O') và ngoại tiếp đường tròn (O). Tia AO cắt đường tròn (O') tại D. Ta có:
Cho tam giác nhọn ABC nội tiếp đường tròn(O). Các cung nhỏ AB, BC, CA có số đo lần lượt là x + 75o, 2x + 25o, 3x - 22o. Một góc của tam giác ABC có số đo là:
Từ một điểm P ở ngoài đường tròn (O), kẻ cát tuyến PAB và PCD tới đường tròn. Gọi Q là một điểm nằm trên cung nhỏ BD (không chứa A và C) sao cho sđ cung BQ = 42° và sđ cung QD = 38°. Tính tổng
Các chương học và chủ đề lớn
Học tốt các môn khác lớp 9