Bài 3 trang 134 SGK Toán 9 tập 2

Cho tam giác ABC vuông ở C có đường trung tuyến BN vuông góc với đường trung tuyến CM, cạnh BC = a. Tính độ dài đường trung tuyến BN.

Bài 3. Cho tam giác \(ABC\) vuông ở \(C\) có đường trung tuyến \(BN\) vuông góc với đường trung tuyến \(CM\), cạnh \(BC = a\). Tính độ dài đường trung tuyến \(BN\).

Hướng dẫn trả lời:

Gọi \(G\) là trọng tâm của tam giác \(ABC\), ta có: \(BG = {2 \over 3}BN\)  

Áp dụng hệ thức lượng trong tam giác vuông \(CNB\), ta có:

\(\eqalign{
& B{C^2} = BN.BG = BN.{2 \over 3}BN = {2 \over 3}B{N^2} \cr
& \Rightarrow B{N^2} = {3 \over 2}B{C^2} = {{3{a^2}} \over 2} \cr
& \Rightarrow BN = \sqrt {{{3{{\rm{a}}^2}} \over 2}} = {{a\sqrt 3 } \over {\sqrt 2 }} = {{a\sqrt 6 } \over 2} \cr}\) 

Vậy \(BN = {{a\sqrt 6 } \over 2}\)

Các bài học liên quan
 Bài 7 trang 134 SGK Toán 9 tập 2
Bài 8 trang 134 SGK Toán 9 tập 2
Bài 10 trang 135 SGK Toán 9 tập 2
Bài 11 trang 135 SGK Toán 9 tập 2
Bài 13 trang 135 SGK Toán 9 tập 2

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật