Giải bài 35 trang 79 - Sách giáo khoa toán 8 tập 2

Bài 35 Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng K

Bài 35 Chứng minh rằng nếu tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k\) thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng \(k\).

Giải:

\(∆A'B'C' ∽ ∆ABC\) theo tỉ số \(k= \frac{A'B'}{AB}\)

\( \Rightarrow \widehat {BAC} = \widehat {B'A'C'}\)   (1)

\(AD\) là phân giác góc \(\widehat {BAC}\) nên \(\widehat {BAD} = {1 \over 2}\widehat {BAC}\)     (2)

\(A'D'\) là phân giác góc \(\widehat {B'A'C'}\) nên \(\widehat {B'A'D'} = {1 \over 2}\widehat {B'A'C'}\)   (3)

Từ (1),(2) và (3) suy ra: \(\widehat{BAD}\) = \(\widehat{B'A'D'}\)

Xét \(∆A'B'D'\) và \(∆ABD\) có:

+) \(\widehat{B}\) = \(\widehat{B'}\) 

+) \(\widehat{BAD}\) = \(\widehat{B'A'D'}\)

\(\Rightarrow ∆A'B'D' ∽ ∆ABD\) theo tỉ số \( \frac{A'B'}{AB}\)= \(\frac{A'D'}{AD}=k\)

Các bài học liên quan
Bài 40 trang 80 - Sách giáo khoa toán 8 tập 2
Bài 44 trang 80 sgk toán 8 tập 2

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật