Giải bài 32 trang 77 - Sách giáo khoa toán 8 tập 2

Bài 32. Trên một cạnh của góc xOy

Bài 32. Trên một cạnh của góc \(xOy\) (\(\widehat{xOy}=180^0\)), Đặt các đoạn thẳng \(OA= 5cm, OB= 16cm\). Trên cạnh thứ hai của góc đó, đặt các đoạn \(OC= 8cm, OD= 10cm\).

a) Chứng minh hai tam giác \(OCB\) và \(OAD\) đồng dạng.

b) Gọi giao điểm của các cạnh \(AD\) và \(BC\) là \(I\), chứng minh rằng hai tam giác \(IAB\) và \(ICD\) có góc các góc bằng nhau từng đôi một.

Giải

a) \(\frac{OA}{OC}\) = \(\frac{5}{8}\) ; \(\frac{OD}{OB}\) = \(\frac{10}{16}\) = \(\frac{5}{8}\)

 \(\Rightarrow \frac{OA}{OC}\) = \(\frac{OD}{OB}\)

Xét  \(∆OCB\) và \(∆OAD\) có:

+) \(\widehat O\) chung

+) \(\frac{OA}{OC}\) = \(\frac{OD}{OB}\)

 \(\Rightarrow ∆OCB ∽ ∆OAD\) ( trường hợp 2)

\( \Rightarrow \widehat {ODA} = \widehat {CBO}\) hay \(\widehat{CDI}\) = \(\widehat{IBA}\)

b) \(∆ICD\) và \(∆IAI\) có

 \(\widehat{CID}\) = \(\widehat{AIB}\) (hai góc đối đỉnh)   (1)

\(\widehat{CDI}\) = \(\widehat{IBA}\) (theo câu a)            (2)

Theo định lí tổng ba góc trong một tam giác ta có:

\(\eqalign{
& \widehat {CID} + \widehat {CDI} + \widehat {ICD} = {180^0} \cr
& \widehat {AID} + \widehat {IBA} + \widehat {IAB} = {180^0} \cr} \)

\( \Rightarrow \widehat {CID} + \widehat {CDI} + \widehat {ICD} = \widehat {AID} + \widehat {IBA} + \widehat {IAB}\)   (3)

Từ (1), (2) và (3) suy ra: \( \widehat {ICD}=\widehat {IAB}\)

Các bài học liên quan
Bài 40 trang 80 - Sách giáo khoa toán 8 tập 2

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật