Giải bài 1 trang 36 sách giáo khoa toán 8 tập 1

Bài 1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

Bài 1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

a) \( \frac{5y}{7}= \frac{20xy}{28x}\);                              b) \( \frac{3x(x + 5))}{2(x + 5)}= \frac{3x}{2}\)

c) \( \frac{x + 2}{x - 1}= \frac{(x + 2)(x + 1)}{x^{2} - 1}\);             d) \( \frac{x^{2} - x - 2}{x + 1}= \frac{x^{2}- 3x + 2}{x - 1}\)

e) \( \frac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\);

Hướng dẫn giải:

a) \( \left.\begin{matrix} 5y.28x = 140xy\\ 7.20xy = 140xy \end{matrix}\right\}\) \(\Rightarrow 5y.28x = 7.20xy\)

nên \( \frac{5y}{7}= \frac{20xy}{28x}\)

b) \(3x(x + 5).2 = 3x.2(x + 5) = 6x(x + 5)\)

nên \( \frac{3x(x + 5)}{2(x +5)}= \frac{3x}{2}\)

c) \( \frac{x + 2}{x - 1}= \frac{(x + 2)(x + 1)}{x^{2} - 1}\)

Vì \((x + 2)(x^2- 1) = (x + 2)(x + 1)(x - 1)\).

d) \( \frac{x^{2} - x - 2}{x + 1}= \frac{x^{2}- 3x + 2}{x - 1}\)

Vì \((x^2-  x - 2)(x - 1) = x^3-  2x^2– x + 2 = (x + 1)(x^2– 3x + 2)\)

e) \( \frac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\)

Vì \(x^3+ 8 = x^3+ 2^3= (x + 2)(x^2– 2x + 4)\)

 
Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật