Giải bài 26 trang 76 sgk Toán lớp 9 tập 2

Cho AB, BC, CA là ba dây của đường tròn (O).

Bài 26. Cho \(AB, BC, CA \) là ba dây của đường tròn \((O)\). Từ điểm chính giữa \(M\) của \(\overparen{AB}\) vẽ dây \(MN\) song song với dây \(BC\). Gọi giao điểm của \(MN\) và \(AC\) là \(S\). Chứng minh \(SM = SC\) và \(SN = SA\)

Hướng dẫn giải:

Ta có:

\(\overparen{MA}\)= \(\overparen{MB}\) (theo gt).

\(\overparen{NC}\)= \(\overparen{MB}\) ( vì \(MN // BC\))

Suy ra \(\overparen{MA}\) = \(\overparen{NC}\), do đó \(\widehat {ACM} = \widehat {CMN}\)

Vậy \(∆SMC\) là tam giác cân, suy ra \(SM = SC\)

Chứng minh tương tự ta cũng có \(∆SAN\) cân , \(SN = SA\).

loigiaihay..com

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật