Giải bài 52 trang 96 sgk toán 8 tập 1

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, gọi F là điểm đối xứng với D qua điểm C. Chứng minh rằng điểm E đối xứng với điểm F qua điểm B.

Bài 52. Cho hình bình hành \(ABCD\). Gọi \(E\) là điểm đối xứng với \(D\) qua điểm \(A\), gọi \(F\) là điểm đối xứng với \(D\) qua điểm \(C\). Chứng minh rằng điểm \(E\) đối xứng với điểm \(F\) qua điểm \(B\).

Bài giải:

                                                  

\(AE // BC\) (vì \(AD // BC\))

\(AE = BC\) (cùng bằng \(AD\))

nên \(ACBE\) là hình bình hành theo dấu hiệu nhận biết hình bình hành.

Suy ra: \(BE // AC, BE = AC\)       (1)

Tương tự \(BF // AC, BF = AC\)    (2)

\(BE\) và \(BF\) cùng song song với \(AC\) và cùng đi qua điểm \(B\) nên theo tiên đề Ơ -clit \(BE\) trùng \(BF\), hay \(B,E,F\) thẳng hàng.

Từ (1) và (2) \( BE = BF\) do đó \(B\) là trung điểm của \(EF\).

Vậy \(E\) đối xứng với \(F\) qua \(B\).

Các bài học liên quan
Bài 61 trang 99 sgk Toán 8 tập 1

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật