Giải bài 3 trang 132 sgk toán 8 tập 2

Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:

Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:

a) Hình thoi?

b) Hình chữ nhật?

Hướng dẫn làm bài:

 

Ta có: CE ⊥ AB(gt)

KB ⊥ AB (gt)

Suy ra BK // CH        (1)

Tương tự BH // KC (2)

Từ (1) và (2) ta được :

Tứ giác BHCK là hình bình hành. Gọi M là giao điểm của hai đường chéo BC và HK.

a) BHCK là hình thoi HM ⊥ BC

Vì HA ⊥ BC nên HM ⊥ BC  ⇔A, H, M thẳng hàng. Tam giác ABC cân tại A.

b) BHCK là hình chữ nhật  ⇔ BH ⊥ HC. Ta lại có BE ⊥ HC, CD ⊥ BH nên BH ⊥ HC ⇔ H, D, E  trùng nhau. Khi đó H, D, E cũng trùng với A. Vậy tam giác ABC là tam giác vuông ở A.

Các bài học liên quan
Bài 7 trang 133 sgk toán 8 tập 2
Bài 8 trang 133 sgk toán 8 tập 2

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật