Giải bài 18 trang 43 sgk toán 8 tập 1

Quy đồng mẫu thức hai phân thức:

Bài 18. Quy đồng mẫu thức hai phân thức:

a)\({{3x} \over {2x + 4}}\) và \({{x + 3} \over {{x^2} - 4}}\)

b)\({{x + 5} \over {{x^2} + 4x + 4}}\) và \({x \over {3x + 6}}\)

Giải

a) Ta có: \(2x + 4 =2(x+2)\)

\({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right)\)

\(MTC = 2\left( {x - 2} \right)\left( {x + 2} \right) = 2\left( {{x^2} - 4} \right)\)

Nên: \({{3x} \over {2x + 4}} = {{3x\left( {x - 2} \right)} \over {2\left( {x + 2} \right)\left( {x - 2} \right)}} = {{3x\left( {x - 2} \right)} \over {2\left( {{x^2} - 4} \right)}}\)

\({{x + 3} \over {{x^2} - 4}} = {{\left( {x + 3} \right).2} \over {\left( {x - 2} \right)\left( {x + 2} \right).2}} = {{2\left( {x + 3} \right)} \over {2\left( {{x^2} - 4} \right)}}\)

b) Ta có: \({x^2} + 4x + 4 = {\left( {x + 2} \right)^2}\)

\(3x + 6 = 3\left( {x + 2} \right)\)

MTC= \(3{\left( {x + 2} \right)^2}\)

Nên: \({{x + 5} \over {{x^2} + 4x + 4}} = {{\left( {x + 5} \right).3} \over {{{\left( {x + 2} \right)}^2}.3}} = {{3\left( {x + 5} \right)} \over {3{{\left( {x + 2} \right)}^2}}}\)

\({x \over {3x + 6}} = {{x.\left( {x + 2} \right)} \over {3\left( {x + 2} \right).\left( {x + 2} \right)}} = {{x\left( {x + 2} \right)} \over {3{{\left( {x + 2} \right)}^2}}}\)

 

Các bài học liên quan
Bài 26 trang 47 sgk toán 8 tập 1
Bài 27 trang 48 sgk toán 8 tập 1

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật