Giải bài 44 trang 133 sgk toán 8 tập 1

Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO.

Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO.

Hướng dẫn làm bài:

 

Từ O lẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.

Ta có OH1  ⊥ AB

Mà AB // CD

Nên OH  ⊥ CD

Do đó  \({S_{ABO}} + {S_{CDO}} = {1 \over 2}O{H_1}.AB + {1 \over 2}O{H_2}.CD\)

= \({1 \over 2}AB\left( {O{H_1} + O{H_2}} \right)\)

= \({1 \over 2}.AB.{H_1}.{H_2}\)

Nên   \({S_{ABO}} + {S_{CDO}} = {1 \over 2}{S_{ABCD}}\) ( 1)

Tương tự  \({S_{BCO}} + {S_{DAO}} = {1 \over 2}{S_{ABCD}}\) (2)

Từ (1) và (2) suy ra :

 \({S_{ABO}} + {S_{CDO}} = {S_{BCO}} + {S_{DAO}}\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật