Giải bài 84 trang 99 sgk Toán lớp 9 tập 2

a) Vẽ lại hình tạo bởi các cung tròn

Bài 84. a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).

b) Tính diện tích miền gạch sọc.

Hướng dẫn giải:

a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)

Vẽ \(\frac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)

Vẽ \(\frac{1}{3}\) đường tròn tâm \(B\), bán kính \(2cm\), ta được cung \(\overparen{DE}\)

Vẽ \(\frac{1}{3}\) đường tròn tâm \(C\), bán kính \(3cm\), ta được cung \(\overparen{EF}\)

b) Diện tích hình quạt \(CAD\) là \(\frac{1}{3}\) \(π.1^2\)

Diện tích hình quạt \(DBE\) là \(\frac{1}{3}\) \(π.2^2\) 

 

Diện tích hình quạt \(ECF\) là \(\frac{1}{3}\) \(π.3^2\)

Diện tích phần gạch sọc là  \(\frac{1}{3}\) \(π.1^2\)+ \(\frac{1}{3}\) \(π.2^2\) + \(\frac{1}{3}\) \(π.3^2\)

                                   = \(\frac{1}{3}\) \(π (1^2 + 2^2 + 3^2)\) = \(\frac{14}{3}π\) (\(cm^2\))

Các bài học liên quan
Bài 93 trang 104 SGK Toán 9 tập 2
Bài 94 trang 105 SGK Toán 9 tập 2

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật