Giải bài 42 trang 83 sgk Toán lớp 9 tập 2
Bài 42. Cho tam giác ABC nội tiếp đường tròn.
- Bài học cùng chủ đề:
- Bài 43 trang 83 sgk Toán lớp 9 tập 2
- Lý thuyết góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn
- Ngữ pháp tiếng anh hay nhất
Bài 42. Cho tam giác \(ABC\) nội tiếp đường tròn. \(P, Q, R\) theo thứ tự là các điểm chính giữa các cung bị chắn \(BC, CA, AB\) bởi các góc \(A, B, C\).
a) Chứng minh \(AP \bot QR\)
b) \(AP\) cắt \(CR\) tại \(I\). Chứng minh tam giác \(CPI\) là tam giác cân
Hướng dẫn giải:
a) Gọi giao điểm của \(AP\) và \(QR\) là \(K\).
\(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn nên
\(\widehat{AKR}\) = \(\frac{sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}}{2}\)=\(\frac{sđ\overparen{AB}+sđ\overparen{AC}+sđ\overparen{BC}}{4}=90^0\)
Vậy \(\widehat{AKR} = 90^0\) hay \(AP \bot QR\)
b) \(\widehat{CIP}\) là góc có đỉnh ở bên trong đường tròn nên:
\(\widehat{CIP}\) = \(\frac{sđ\overparen{AR}+sđ\overparen{CP}}{2}\) (1)
\(\widehat {PCI}\) góc nội tiếp, nên \(\widehat {PCI}\)= \(\frac{sđ\overparen{RB}+sđ\overparen{BP}}{2}\) (2)
Theo giả thiết thì cung \(\overparen{AR} = \overparen{RB}\) (3)
Cung \(\overparen{CP} = \overparen{BP}\) (4)
Từ (1), (2), (3), (4) suy ra: \(\widehat {CIP}=\widehat {PCI}\). Do đó \(∆CPI\) cân.