Giải bài 7 trang 109 - Sách giáo khoa toán 7 tập 1
Bài 7. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC(H nằm trên BC).
- Bài học cùng chủ đề:
- Bài 8 trang 109 - Sách giáo khoa toán 7 tập 1
- Bài 9 trang 109 - Sách giáo khoa toán 7 tập 1
- Lý thuyết. Tổng ba góc của một tam giác
- Ngữ pháp tiếng anh hay nhất
Bài 7. Cho tam giác \(ABC\) vuông tại \(A\). Kẻ \(AH\) vuông góc với \(BC\) (\(H\) nằm trên \(BC\)).
a) Tìm các cặp góc phụ nhau trong hình vẽ.
b) Tìm các cặp góc nhọn bằng nhau trong hình vẽ.
Giải
a) Tam giác \(ABC\) vuông tại \(A\) nên có \(\widehat{B }\) + \(\widehat{C }= 90^0\)
Hay \(\widehat{B }\), \(\widehat{C }\) phụ nhau,
Tam giác \(AHB\) vuông tại \(H\) nên có \(\widehat{B }\)+ \(\widehat{A_{1} }= 90^0\)
Hay \(\widehat{B }\), \(\widehat{A_{1} }\) phụ nhau.
Tam giác \(AHC\) vuông tại \(H\) nên có \(\widehat{A_{2} }\)+ \(\widehat{C } = 90^0\)
hay \(\widehat{A_{2} }\), \(\widehat{C }\) phụ nhau.
b)
Ta có \(\widehat{B }\) + \(\widehat{C }= 90^0\)
\(\widehat{B }\)+ \(\widehat{A_{1} }= 90^0\)
\(\Rightarrow \widehat{A_{1} }=\widehat{C }\)
\(\widehat{B }\) + \(\widehat{C }=90^0\) và \(\widehat{A_{2} }\)+ \(\widehat{C }\) = \(90^0\)
\(\Rightarrow \widehat{A_{2} }\) = \(\widehat{B }\)