Giải bài 9 trang 70 sgk Toán 9 - tập 1
Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và Tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông goác với DI. Đường thẳng này cắt đường thẳng BC tại L.
- Bài học cùng chủ đề:
- Lý thuyết một số hệ thức về cạnh và đường cao trong tam giác vuông
- Ngữ pháp tiếng anh hay nhất
Bài 9. Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và Tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông goác với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng
a) Tam giác DIL là một tam giác cân;
b) Tổng \(\frac{1}{DI^{2}}+\frac{1}{DK^{2}}\) không đổi khi I thay đổi trên cạnh AB.
Hướng dẫn giải:
a) \(\Delta ADI\) và \(\Delta CDL\) có:
\(\widehat{A}=\widehat{C}= 90^{\circ}\)
\(AD=CD\) (hai cạnh hình vuông)
\(\widehat{D_{1}}=\widehat{D_{2}}\) cùng phụ với \(\widehat{CDI}\)
Do đó \(\Delta ADI=\Delta CDL\) (g.c.g)
Suy ra \(DI=DL\). Vậy \(\Delta DIL\) cân
b) Áp dụng hệ thức \(\frac{1}{h^{2}}=\frac{1}{b^{2}}+\frac{1}{c^{2}}\) ta có \(\frac{1}{DC^{2}}=\frac{1}{DL^{2}}+\frac{1}{DK^{2}}\)
Do đó \(\frac{1}{DC^{2}}=\frac{1}{DI^{2}}+\frac{1}{DK^{2}}\)
Do DC không đổi nên \(\frac{1}{DI^{2}}+\frac{1}{DK^{2}}\) là không đổi.
Nhận xét: Câu a) chỉ là gợi ý để làm câu b). Điều phải chứng minh ở câu b) rất gần với hệ thức \(\frac{1}{h^{2}}=\frac{1}{b^{2}}+\frac{1}{c^{2}}\)
Nếu đề bài không cho vẽ \(DL\perp DK\) thì ta vẫn phải vẽ đường phụ \(DL\perp DK\) để có thể vận dụng hệ thức trên.