Giải bài 59 trang 92 sgk toán 8 tập 2

Hình thang ABCD (AB//CD) có AC và BD cắt nhau tại O, AD và BC cắt nhau tại K. Chứng minh rằng OK đi qua trung điểm của các cạnh AB và CD.

Hình thang ABCD (AB//CD) có AC và BD cắt nhau tại O, AD và BC cắt nhau tại K. Chứng minh rằng OK đi qua trung điểm của các cạnh AB và CD.

Giải

 

Qua O kẻ đường thẳng song song với AB, CD cắt AD, BC lần lượt tại E, F.

Ta có: OE = OF (xem cách chứng minh ở bài tập 20)

Do đó: \({{AN} \over {EO}} = {{KN} \over {KO}}\) (AN // EO)

Mà \({{BN} \over {OF}} = {{KN} \over {KO}}\) (BN // OF)

=>\({{AN} \over {EO}} = {{BN} \over {FO}}\) Mà OE = OF

=>AN = BN hay N là trung điểm của AB.

Chứng minh tương tự: \({{DM} \over {OE}} = {{CM} \over {OF}} =  > MD = MC\)

=>M là trung điểm của CD.

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 8 mới cập nhật