Lý thuyết phương trình chứa dấu giá trị tuyệt đối
1. Nhắc lại về giá trị tuyệt đối
1. Nhắc lại về giá trị tuyệt đối
Giá trị tuyệt đối của số a, kí hiệu là |a| được định nghĩa như sau:
|a| = a khi a ≥ 0
|a| = -a khi a < 0
2. Giải một số phương trình chứa dấu giá trị tuyệt đối
a) Phương pháp chung
Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đôi
Bước 2: Giải các bất phương trình không có dấu giá trị tuyệt đối
Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét
Bước 4: Kết luận nghiệm
b) Các dạng thường gặp:
Dạng |A(x)| = B(x)
|A(x)| = B(x) với A(x) ≥ 0
hoặc |A(x)| = -B(x) với A(x) < 0
Dạng |A(x)| = |B(x)|
|A(x)| = |B(x)| = B(x)
hoặc |A(x)| = |B(x)| = -B(x)
Trên đây là bài học "Lý thuyết phương trình chứa dấu giá trị tuyệt đối" mà dayhoctot.com muốn gửi tới các em. Để rèn luyện về kỹ năng làm bài thi và kiểm tra các em tham khảo tại chuyên mục "Đề thi học kì 1 lớp 8" nhé.
Nếu thấy hay, hãy chia sẻ tới bạn bè để cùng học và tham khảo nhé! Và đừng quên xem đầy đủ các bài Giải bài tập Toán Lớp 8 của dayhoctot.com.
Các bài học liên quan
1. Định nghĩa Tam giác A\'B\'C\' gọi là đồng dạng với tam giác ABC nếu:
Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng
Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đô đồng dạng
1. Áp dụng các trường hợp đồng dạng của tam giác và tam giác vuông
Các chương học và chủ đề lớn
Học tốt các môn khác lớp 8