Giải bài 96 trang 105 SGK Toán 9 tập 2
Cho tam giác ABC nội tiếp đường tròn (O) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH. Chứng minh rằng:
- Bài học cùng chủ đề:
- Bài 97 trang 105 SGK Toán 9 tập 2
- Bài 98 trang 105 SGK Toán 9 tập 2
- Bài 99 trang 105 SGK Toán 9 tập 2
- Ngữ pháp tiếng anh hay nhất
Bài 96. Cho tam giác \(ABC\) nội tiếp đường tròn \((O)\) và tia phân giác của góc \(A\) cắt đường tròn tại \(M\). Vẽ đường cao \(AH\). Chứng minh rằng:
a) \(OM\) đi qua trung điểm của dây \(BC\).
b) \(AM\) là tia phân giác của góc \(OAH\).
Hướng dẫn trả lời:
a) Vì \(AM\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAM} = \widehat {MAC}\)
Mà \(\widehat {BAM}\) và \(\widehat {MAC}\) đều là góc nội tiếp của \((O)\) nên
\(\overparen{BM}\)=\(\overparen{MC}\)
⇒ \(M\) là điểm chính giữa cung \(BC\)
Vậy \(OM \bot BC\) và \(OM\) đi qua trung điểm của \(BC\)
b) Ta có : \(OM \bot BC\) và \(AH\bot BC\) nên \(AH//OM\)
\( \Rightarrow \widehat {HAM} = \widehat {AM{\rm{O}}}\) (so le trong) (1)
Mà \(∆OAM\) cân tại \(O\) nên \(\widehat {AM{\rm{O}}} = \widehat {MAO}\) (2)
Từ (1) và (2) suy ra: \(\widehat {HA{\rm{M}}} = \widehat {MAO}\)
Vậy \(AM\) là đường phân giác của góc \(OAH\)