Giải bài 9 trang 12 sgk Toán 9 tập 2
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
- Bài học cùng chủ đề:
- Bài 10 trang 12 sgk Toán 9 tập 2
- Bài 11 trang 12 sgk Toán 9 tập 2
- Lý thuyết Hệ hai phương trình bậc nhất hai ẩn.
- Ngữ pháp tiếng anh hay nhất
9. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\)
Bài giải:
a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -x + 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -x + 2 & & \\ y = -x + \frac{2}{3} & & \end{matrix}\right.\)
Ta có: \(a = -1, a' = -1\), \(b = 2, b' = \frac{2}{3}\) nên \(a = a', b ≠ b'\) \(\Rightarrow\) Hai đường thẳng song song nhau.
Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.
b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} 2y = 3x - 1 & & \\ 4y = 6x& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = \frac{3}{2}x - \frac{1}{2} & & \\ y = \frac{3}{2}x& & \end{matrix}\right.\)
Ta có: \(a = \frac{3}{2}, a' = \frac{3}{2}\), \(b = -\frac{1}{2}, b' = 0\) nên \(a = a', b ≠b'\).
\(\Rightarrow\) Hai đường thẳng song song với nhau.
Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.