Giải bài 54 trang 63 SGK Toán 9 tập 2
Vẽ đồ thị của hàm số
- Bài học cùng chủ đề:
- Bài 55 trang 63 SGK Toán 9 tập 2
- Bài 56 trang 63 SGK Toán 9 tập 2
- Bài 57 trang 63 SGK Toán 9 tập 2
- Ngữ pháp tiếng anh hay nhất
Bài 54. Vẽ đồ thị của hàm số \(y = {1 \over 4}{x^2}\) và \(y = - {1 \over 4}{x^2}\) trên cùng một hệ trục tọa độ
a) Qua điểm \(B(0; 4)\) kẻ đường thẳng song song với trục Ox. Nó cắt đồ thị của hàm số \(y = {1 \over 4}{x^2}\) tại hai điểm M và M’. Tìm hoành độ của M và M’.
b) Tìm trên đồ thị của hàm số \(y = - {1 \over 4}{x^2}\) điểm N có cùng hoành độ với M, điểm N’ có cùng hoành độ với M’. Đường thẳng NN’ có song song với Ox không? Vì sao? Tìm tung độ của N và N’ bằng hai cách:
- Ước lượng trên hình vẽ:
- Tính toán theo công thức.
Giải:
Vẽ đồ thị hàm số:
* Hàm số \(y = {1 \over 4}{x^2}\) và \(y = - {1 \over 4}{x^2}\)
- Tập xác định \(D = R\)
- Bảng giá trị
- Đồ thị hàm số \(y = {1 \over 4}{x^2}\) và \(y = - {1 \over 4}{x^2}\) là các Parabol có đỉnh là gốc tọa độ O và nhận Oy làm trục đối xứng. Đồ thị hàm số \(y = {1 \over 4}{x^2}\) nằm trên trục hoành, đồ thị hàm số \(y = - {1 \over 4}{x^2}\) nằm dưới trục hoành.
a) Đường thẳng qua \(B(0; 4)\) song song với \(Ox\) cắt đồ thị tại hai điểm \(M, M'\) (xem trên đồ thị). Từ đồ thị ta có hoành độ của \(M\) là \(x = 4\), của \(M'\) là \(x = - 4\).
b) Trên đồ thị hàm số \(y = - {1 \over 4}{x^2}\) ta xác định được điểm \(N\) và \(N’\) có cùng hoành độ với \(M, M’\). ta được đường thẳng \(M, M’\)
Tìm tung độ của \(N, N’\)
- Ước lượng trên hình vẽ được tung độ của \(N\) là \(y = - 4\); của \(N’\) là \(y = -4\)
- Tính toán theo công thức:
Điểm \(N\) trên \(y = - {1 \over 4}{x^2}\) có \(x = 4\) nên \(y = - {1 \over 4}{.4^2} = - 4\)
Điểm \(N’\) trên \(y = - {1 \over 4}{x^2}\) có \(x = 4\) nên \(y = - {1 \over 4}.{( - 4)^2} = - 4\)
Vậy tung độ của \(N, N’ = -4\).