Lý thuyết về căn bậc ba

Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:

Lý thuyết về căn bậc ba

Tóm tắt kiến thức:

1.Căn bậc ba của một số a là số x sao cho x3 = a 

Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)

Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)

Mọi số thực đều có căn thức bậc ba.

2. Các tính chất:

a) \(a < \root 3 \of a  < \root 3 \of b \)

b) \(\root 3 \of {ab}  = \root 3 \of a .\root 3 \of b \)

c) Với b ≠ 0, ta có \(\root 3 \of {{a \over b}}  = {{\root 3 \of a } \over {\root 3 \of b }}\)

3. Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:

a) \(a\root 3 \of b  = \root 3 \of {{a^3}b} \)

b) \(\root 3 \of {{a \over b}}  = {{\root 3 \of {a{b^2}} } \over b}\)

c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \pm AB + {B^2}} \right) = {A^3} \pm {B^3}\) ta có:

\(\eqalign{
& \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \pm \root 3 \of {ab} + \root 3 \of {{b^3}} } \right) \cr
& = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)

 Do đó

\(\eqalign{
& {M \over {\root 3 \of a \pm \root 3 \of b }} \cr
& = {{M\left( {\root 3 \of {{a^2}} \pm \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \pm \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr
& = {{M\left( {\root 3 \of {{a^2}} \pm \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật