Giải bài 53 trang 30 sgk Toán 9 - tập 1

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):

Bài 53. Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa) :

a) \(\sqrt{18(\sqrt{2}-\sqrt{3})^{2}};\)

b) \(ab\sqrt{1+\frac{1}{a^{2}b^{2}}};\)

c) \(\sqrt{\frac{a}{b^{3}}+\frac{a}{b^{4}}};\)

d) \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\)

Hướng dẫn giải:

a)

\(\sqrt{18(\sqrt{2}-\sqrt{3})^{2}}\)

\(=\sqrt{18}.|\sqrt{2}-\sqrt{3}|\)

\(=3\sqrt{2}(\sqrt{3}-\sqrt{2})=3\sqrt{6}-6\)

b)

Nếu \(ab>0\) thì: 

\(ab\sqrt{1+\frac{1}{a^{2}b^{2}}}=\sqrt{a^2b^2+\frac{a^2b^2}{a^2b^2}}=\sqrt{a^2b^2+1}\)

c)

\(\sqrt{\frac{a}{b^{3}}+\frac{a}{b^{4}}}=\sqrt{\frac{ab}{b^4}+\frac{a}{b^4}}=\sqrt{\frac{1}{b^4}.(ab+a)}=\frac{\sqrt{ab+a}}{b^2}\)

d) \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{(a+\sqrt{ab})(\sqrt{a}-\sqrt{b})}{a-b}=\frac{a\sqrt{a}-a\sqrt{b}+\sqrt{ab}\sqrt{a}-\sqrt{ab}\sqrt{b}}{a-b}\)

\(=\frac{a\sqrt{a}-a\sqrt{b}+\sqrt{a^{2}b}-\sqrt{ab^{2}}}{a-b}=\frac{a\sqrt{a}-a\sqrt{b}+a\sqrt{b}-b\sqrt{a}}{a-b}\)

\(=\frac{(a-b)\sqrt{a}}{a-b}=\sqrt{a}.\)

Nhận xét. Nhận thấy rằng để \(\sqrt{a}\) có nghĩa thì a >0. Do đó \(a=(\sqrt{a})^{2}\). Vì thế có thể phân tích tử thành nhân tử.

\(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{(\sqrt{a})^{2}+\sqrt{a}.\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}}=\sqrt{a}.\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật