Giải bài 36 trang 56 sgk toán 9 tập 2
Giải các phương trình:
- Bài học cùng chủ đề:
- Bài 37 trang 56 sgk Toán 9 tập 2
- Bài 38 trang 56 sgk Toán 9 tập 2
- Bài 39 trang 57 sgk Toán 9 tập 2
- Ngữ pháp tiếng anh hay nhất
Bài 36. Giải các phương trình:
a) \((3{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}1)({x^2}-{\rm{ }}4){\rm{ }} = {\rm{ }}0\);
b) \({(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4)^2}-{\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}0\)
Bài giải:
a) \((3{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}1)({x^2}-{\rm{ }}4){\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \matrix{
3{x^2} - 5x + 1 = 0 \hfill \cr
{x^2}-{\rm{ }}4{\rm{ }} = {\rm{ }}0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {{5 \pm \sqrt {13} } \over 6} \hfill \cr
x{\rm{ }} = {\rm{ }} \pm 2 \hfill \cr} \right.\)
b) \({(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4)^2}-{\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}0\)
\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4{\rm{ }} + {\rm{ }}2x{\rm{ }}-{\rm{ }}1)(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }} \)\(= {\rm{ }}0\)
\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}5)(2{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}3){\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \matrix{
2{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0 \hfill \cr
2{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0 \hfill \cr} \right.\)
\({x_1} = {\rm{ }}1;{\rm{ }}{x_2} = {\rm{ }} - 2,5;{\rm{ }}{x_3} = {\rm{ }} - 1;{\rm{ }}{x_4} = {\rm{ }}1,5\)