Giải bài 27 trang 88 sgk Toán 9 - tập 1

Giải tam giác ABC vuông tại A, biết rằng:

Bài 27. Giải tam giác ABC vuông tại A, biết rằng:

a) \(b=10cm; \widehat{C}=30^{\circ}\)

b) \(c=10cm; \widehat{C}=45^{\circ}\)

c) \(a=20cm; \widehat{B}=35^{\circ}\)

d) \(c=21cm; b=18cm\)

Hướng dẫn giải:

a) (H.a)

\(\widehat{B}=90^{\circ}-30^{\circ}=60^{\circ}.\)

\(AB=AC\cdot tgC=10\cdot tg30^{\circ}\approx 5,774 (cm)\)

\(BC=\frac{AC}{cosC}=\frac{10}{\cos30^{\circ}}\approx 11,547 (cm)\).

b) (H.b)

\(\widehat{B}=90^{\circ}-45^{\circ}=45^{\circ}.\)

\(\Rightarrow AC=AB=10 (cm);\)

\(BC=\frac{AB}{sin C}=\frac{10}{\sin45^{\circ}}\approx 14,142 (cm)\)

c) (H.c)

\(\widehat{C}=90^{\circ}-35^{\circ}=55^{\circ}.\)

\(AB=BC\cdot cosB=20\cdot cos35^{\circ}\approx 16,383 (cm)\)

\(AC= BC \cdot sinB=20\cdot sin35^{\circ}\approx 11,472 (cm)\).

d) (H.d)

\(tgB=\frac{AC}{AB}=\frac{18}{21}\approx 0,8571\)

\(\Rightarrow \widehat{B}\approx 41^{\circ};\widehat{C }\approx 49^{\circ}.\)

\(C=\frac{AC}{sinB}=\frac{18}{sin41^{\circ}}\approx 27,437 (cm)\)

Nếu tính theo định lý Py-ta-go thì

\(BC=\sqrt{21^{2}+18^{2}}\approx 27,659 (cm)\).

Kết quả này chính xác hơn vì khi tính toán, ta dùng ngay các số liệu đã cho mà không dùng kết quả trung gian.

Các bài học liên quan
Bài 36 trang 94 SGK Toán 9 tập 1

Bài học nổi bật nhất

Đề thi lớp 9 mới cập nhật