Giải câu 3 trang 157 SGK Vật Lý 12 Nâng cao

Cho đoạn mạch RLC nối tiếp

Bài 3. Cho đoạn mạch RLC nối tiếp có \(R = 50\,\Omega ;L = 159\,mH,C = 31,8\,\mu F.\) Điện áp giữa hai đầu đoạn mạch có biểu thức \(u = 120\cos 100\pi t(V).\) Tính tổng trở của đoạn mạch và viết biểu thức của cường độ dòng điện tức thời qua đoạn mạch.

Giải

Đoạn mạch RLC nối tiếp có \(R = 50\Omega ;L = 159mH,C = 31,8\mu F.\)

\(u = 120\cos 100\pi t(V) \Rightarrow {U_0} = 120(V);\omega = 100\pi (rad/s)\)

Ta có :\({Z_L} = L\omega = {159.10^{ - 3}}.100\pi = 50(\Omega )\)

\({Z_C} = {1 \over {C\omega }} = {1 \over {31,{{8.10}^{ - 6}}.100\pi }} = 100(\Omega )\)

\( \Rightarrow \) \(Z = \sqrt {{R^2} + {{({Z_L} - {Z_C})}^2}} = \sqrt {{{50}^2} + {{(50 - 100)}^2}} = 50\sqrt 2 (\Omega )\)

\( \Rightarrow \) \({I_0} = {{{U_0}} \over {{Z_{AB}}}} = {{120} \over {50\sqrt 2 }} = 1,2\sqrt 2 (A)\)

\(\tan \varphi = {{{Z_L} - {Z_C}} \over R} = {{50 - 100} \over {50}} = - 1 \Rightarrow \varphi = {{ - \pi } \over 4}\)      

Vậy : \(i = {I_0}\cos (100\pi t - \varphi ) \Leftrightarrow i = 1,2\sqrt 2 \cos (100\pi t + {\pi \over 4})(A).\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật