Giải bài 121 trang 47 sgk toán 6 tập 1

Tìm số tự nhiên k để 3 . k là số nguyên tố.

Bài 121.

a) Tìm số tự nhiên \(k\) để \(3 . k\) là số nguyên tố.

b) Tìm số tự nhiên \(k\) để \(7 . k\) là số nguyên tố.

Bài giải:

a) Nếu \(k > 1\) thì \(3k\) có ít nhất ba ước là \(1, 3, 3k\); nghĩa là nếu \(k > 1\) thì \(3k\) là một hợp số. Do đó để \(3k\) là một số nguyên tố thì \(k = 1\).

b) Tương tự nếu \(k>1\) thì \(7k\) có ít nhất ba ước là \(1;7;7k\); nghĩa là nếu \(k>1\) thì \(7k\) là một hợp số. Do đó để \(7k\) là một số nguyên tố thì \(k=1\).

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 6 mới cập nhật