Lý thuyết Hệ thức Vi-ét và ứng dụng
Hệ thức Vi-ét
A. Kiến thức cơ bản:
1. Hệ thức Vi-ét
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\frac{b}{a}& & \\ x_{1}x_{2}=\frac{c}{a} & & \end{matrix}\right.\)
2. Áp dụng:
Tính nhẩm nghiệm.
- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}\)= \(\frac{c}{a}\).
- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có nghiệm là \({x_1}= -1\), còn nghiệm kia là \({x_2}\)= \(\frac{-c}{a}\).
3. Tìm hai số khi biết tổng và tích của chúng:
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) và \({S^2}-{\rm{ }}4P{\rm{ }} \ge {\rm{ }}0\) thì hai số đó là hai nghiệm của phương trình: \({x^2}-{\rm{ }}Sx{\rm{ }} + {\rm{ }}P{\rm{ }} = {\rm{ }}0\).