Giải bài 44 trang 27 SGK Toán 9 tập 2
Một vật có khối lượng 124 g và thể tích 15 cm2 là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 g đồng thì có thể tích là 10cm3 và 7g kẽm có thể tích là 1cm3
- Bài học cùng chủ đề:
- Bài 45 trang 27 SGK Toán 9 tập 2
- Bài 46 trang 27 SGK Toán 9 tập 2
- Ngữ pháp tiếng anh hay nhất
Bài 44. Một vật có khối lượng 124 g và thể tích 15 \(c{m^3}\) là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 g đồng thì có thể tích là 10cm3 và 7g kẽm có thể tích là 1cm3
Giải:
Gọi \(x\) (gam) và \(y\) (gam)lần lượt là số gam đồng và kẽm có trong vật đã cho. Điều kiện:\( x > 0; y > 0\).
Vì khổi lượng của vật là 124 gam, ta có phương trình: \(x + y = 124\) (1)
Khi đó, thể tích của \(x\) (gam) đồng là \({{10} \over {89}}x(c{m^3})\) và thể tích của \(y\) (gam) kẽm là \({{1} \over {7}}y(c{m^3})\)
Vì thể tích của vật là 15cm3, nên ta có phương trình: \({{10} \over {89}}x + {1 \over 7}y = 15(2)\)
Ta có hệ phương trinh : \(\left\{ \matrix{x + y = 124(1) \hfill \cr {{10} \over {89}}x + {1 \over 7}y = 15(2) \hfill \cr} \right.\)
Giải hệ phương trình ta được \(x = 89\) (nhận) và \(y = 35\) (nhận)
Vậy vật đã cho có 89 gam đồng và 35 gam kẽm.