Giải câu 19 trang 14 SGK Đại số 10 Nâng cao
Xác định xem các mệnh đề sau đây đúng hay sai và nêu mệnh đề phủ định của mỗi mệnh đề đó.
- Bài học cùng chủ đề:
- Câu 20 trang 15 SGK Đại số 10 Nâng cao
- Câu 21 trang 15 SGK Đại số 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Xác định xem các mệnh đề sau đây đúng hay sai và nêu mệnh đề phủ định của mỗi mệnh đề đó.
a) \(\exists x\, \in \,R,{x^2} = 1\)
b) \(\exists n\, \in \,N,\,n(n + 1)\) là một số chính phương
c) ∀x ∈ R, (x – 1)2 ≠ x – 1
d) ∀x ∈ N, n2 + 1 không chia hết cho 4.
Giải
a) Mệnh đề “\(\exists x\, \in \,R,{x^2} = 1\)” là đúng vì x = 1 thì 12 = 1
Mệnh đề phủ định là: “∀x ∈ R, x2 ≠ 1”
b) Mệnh đề “\(\exists n\, \in \,N,\,n(n + 1)\)" là một số chính phương, đúng vì:
Với n = 0; n(n + 1) = 0 là một số chính phương
Mệnh đề phủ định là: “∀x ∈ N, n(n + 1) không là số chính phương.
c) Mệnh đề “∀x ∈ R, (x – 1)2 ≠ x – 1” là sai vì:
x = 1 : (1 – 1)2 = 1 – 1
Mệnh đề phủ định là “\(\exists x \in R;\,{(x - 1)^2} = x - 1\) ”
d) Mệnh đề “∀x ∈ N, n2 + 1 không chia hết cho 4” là đúng vì:
Với n = 2k (k ∈ N) thì n2 + 1 lẻ nên không chia hết cho 4.
Với n = 2k + 1 (k ∈ N) thì n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 không chia hết cho 4.
Mệnh đề phủ định là: “\(\exists n \in N,\,{n^2} + 1\) chia hết cho 4”.
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học